

MikroTik, what it is and what it is for

- Mikrotik (Latvian: Mikrotīkls) is a Latvian company engaged in the production and sale of network equipment and software "RouterOS".
- These products are used by Internet Service Providers and other individuals and legal entities to organize, manage and monitor their computer network and complete network infrastructure.
- Their goal is to make existing Internet technologies accessible to everyone, much faster for the widest possible range of users

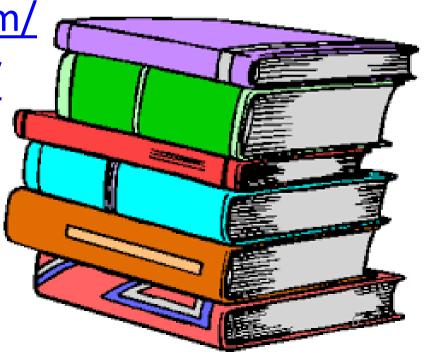
Where are they?

- MikroTik company is located in Eastern Europe.
- City of Riga, State of Latvia

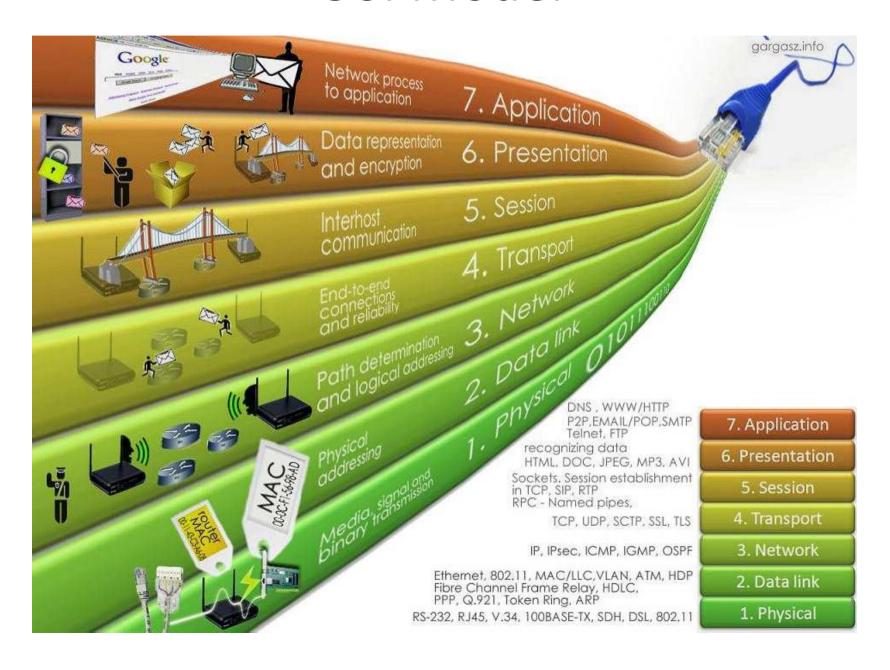
RouterBoard

- It is hardware produced by the company MikroTik. Together with the software called **RouterOS** and the licenses that give certain privileges and opportunities to the given device, it makes a complete product of the mentioned company.
- There is a considerable range of RBs in use today, ranging from SOHO routers to routers used in various corporations.

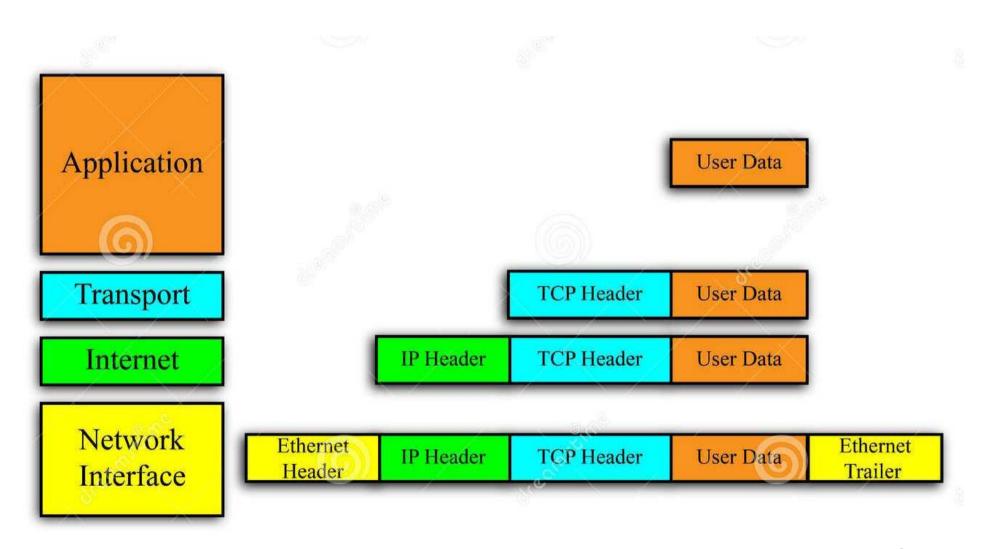
RouterOS


- "MikroTik RouterOS "is the operating system of" MikroTik RouterBoard "hardware.
- "RouterOS" can also be installed on a personal computer and thus turn it into a router with all the advanced features and functions.
- "RouterOS" is based on the Linux v3.3.5 version of the kernel and is "stand-alone", ie. standalone operating system, which aims to provide all the basic and advanced functions of a single router with a simple and understandable interface and easy installation.

Useful links


- http://www.mikrotik.com/
- http://routerboard.com/
- http://wiki.mikrotik.com

http://forum.mikrotik.com/


http://www.tiktube.com/

OSI Model

TCP / IP Model (industry standard)

OSI Layer 1

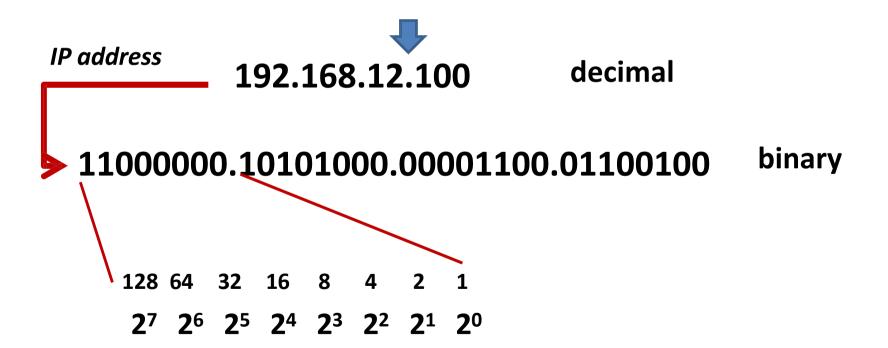
- Physical layer, information is transmitted in a stream (0,1)
- Transmission media are: Copper, Glass, Ether (air)
- The devices of the first layer are: wireless cards, network cards, optical transceivers (media converters), repeaters
- The data on this layer is called being

OSI Layer 2

- Data link (or data layer).
- The physical address of the device, ie the MAC address, is bound to this layerIt is unique for each device (or network card),
- It is 48 bits long
- Example 00: 0C: 42: 20: 97: 68, 000C.4220.9768, 00-0C-42-20-97-68
- The devices of the second layer are: switch, bridge, hubThe data on this layer is called frames.

OSI Layer 3

- Network layer.
- Work with IP addresses is performed on this layer
- The IP address is the logical address of the device.
- It is 32 bits (4 bytes) long and is represented in decimal form
- Example 147.91.216.2
- The data on this layer is called packets

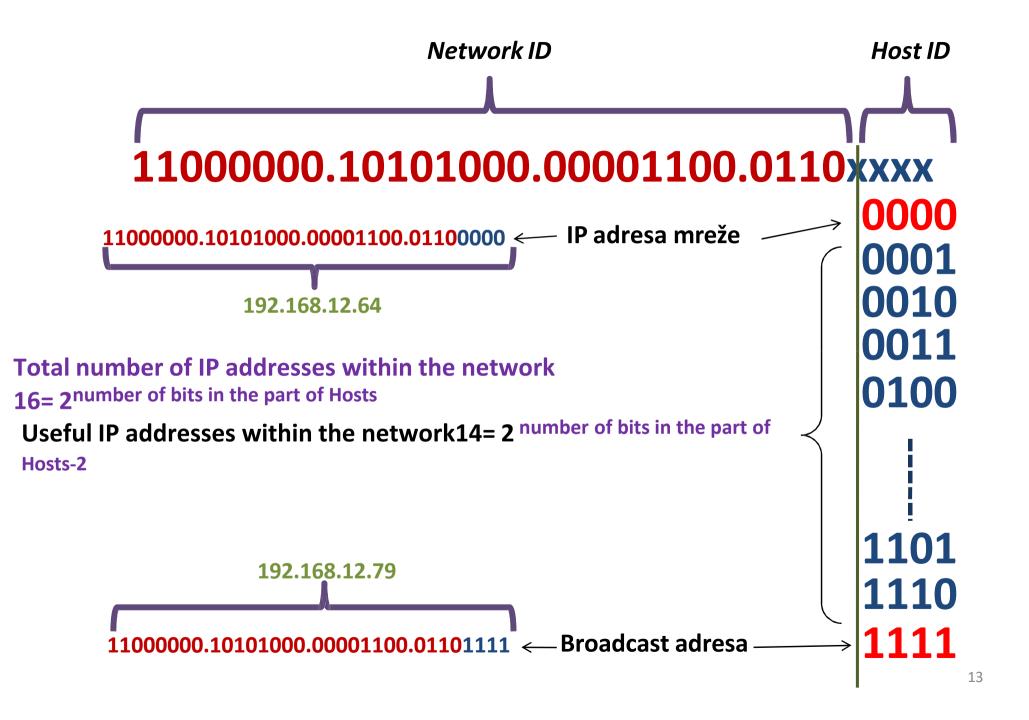

OSI Layer 4

- Transport layer
- Two basic protocols, TCP and UDP, operate on this layer
- TCP is a reliable protocol that in case of packet loss, requires retransmission to be repeated, while in UDP this is not the case.
- These protocols are used by higher layer protocols.

IPv4 addressing

IP address - 32 bits, 4 bytes, 1 byte = 8 bits

Example of one IP address



192.168.12.100 / 28

IP adresa Subnet mask 192.168.12.100 (28 11000000.10101000.00001100.01100100 11111111.11111111.1111111.1111**0**000 Host ID Network ID 11000000.10101000.00001100.0110**0100**

28

Network ID = first 28 bits within the IP address

Private IP addresses

• 10.0.0.0 - 10.255.255.255

• 172.16.0.0 - 172.31.255.255

• 192.168.0.0 - 192.168.255.255

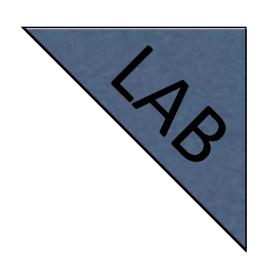
Classfull networks (subnet)

Class	Leading bits	Size of network number bit field	Size of <i>rest</i> bit field	Number of networks	Addresses per network	Start address	End address
Class A	0	8	24	128 (2 ⁷)	16,777,216 (2 ²⁴)	0.0.0.0	127.255.255.255
Class B	10	16	16	16,384 (2 ¹⁴)	65,536 (2 ¹⁶)	128.0.0.0	191.255.255.255
Class C	110	24	8	2,097,152 (2 ²¹)	256 (2 ⁸)	192.0.0.0	223.255.255.255
Class D (multicast)	1110	not defined	not defined	not defined	not defined	224.0.0.0	239.255.255.255
Class E (reserved)	1111	not defined	not defined	not defined	not defined	240.0.0.0	255.255.255.255

Classless Inter-Domain Routing (CIDR)

IP Addresses	Bits	Prefix	Subnet Mask	
1	0	/32	255.255.255.25	
2	1	/31	255.255.255.254	
4	2	/30	255.255.255,251	
8	3	/29	255.255.255.248	
16	4	/28	255,255,255,240	
32	5	/27	255.255.255.224	
64	6	/26	255.255.255.190	
128	7	/25	255.255.255.128	
256	8	/24	255.255.255.0	
512	9	/23	255.255.254.0	
1 K	10	122	255,255,252.0	
2 K	11	/21	255.255.248.0	
4 K	12	/20	255,255,240,0	
8 K	13	/19	255,255,224,0	
16 K	14	/18	255,255,192,0	
32 K	15	/17	255,255,128,0	
64 K	16	/16	255.255.0.0	
128 K	17	/15	255,254,0.0	
256 K	18	/14	255,252,0.0	
512 K	19	/13	255.248.0.0	
1.00	20	712	255,240,0,0	
2 M	21	/11	255,224.0.0	
4 M	22	/10	255.192.0.0	
8 M	23	/9	255.128.0.0	
16 M	24	/8	255.0.0.0	
32 M	25	/7	254,0,0,0	
64 M	26	/6	252.0.0.0	
128 M	27	/5	248.0.0.0	
256 M	28	/4	240.0.0.0	
512 M	29	/3	224.0.0.0	
1024 M	30	/2	192,0,0,0	
2048 M	31	/1	128.0.0.0	
4096 M	32	/0	0.0.0.0	

- Calculate following parameters for given IP addresses:
 - network address, broadcast address, number of valid hosts, subnet mask in decimal notation.
- 172.18.36.87/18, 192.168.45.34/24,
 10.11.12.13/14


- What are valid IP addresses for hosts in the same subnet with the host with IP address: 192.168.1.91/28
- 192.168.1.89
- 192.168.1.78
- 192.168.1.80
- 192.168.1.95
- 192.168.1.97

- ISP has allocated to your company IP address space 84.52.180.0/24
- Split your address space into right sizes
- In location A, you have 20 hosts, in B 32 hosts and in C 10 hosts

Aggregating practice

-172.18.1.0/22, 172.18.2.0/23, 172.18.4.0/24